Developing a Uniform Meaning Representation for Natural Language Processing

Jens Van Gysel, Meagan Vigus, Jin Zhao, Nianwen Xue

Based on joint work with Jayeol Chun, Kenneth Lai, Sara Moeller, Jiarui Yao, Tim O'Gorman, Andrew Cowell, William Croft, Chu-Ren Huang, Jan Hajic, James Martin, Stephan Oepen, Martha Palmer, James Pustejovsky, Rosa Vallejos
Outline

▶ Background
 ▶ Do we need a new meaning representation?
 ▶ What makes UMR desirable?
▶ Aspects of Uniform Meaning Representation (UMR)
 ▶ Formal properties of UMR
 ▶ Cross-lingual applicability - separating the language-independent from the language-specific
 ▶ Document-level vs. sentence-level representation
 ▶ UMR-Writer annotation tool
▶ Discussion:
 ▶ Are symbolic representations of meaning still needed?
 ▶ Use cases for UMR
Do we need a new meaning representation?

- Existing meaning representations vary a great deal in their focus and perspective
 - Formal semantic representations for *logical inference* (e.g. MRS, DRT) focus on the proper representation of:
 - quantification
 - negation
 - tense
 - modality
 - Lexical semantic representations (e.g. TR, AMR) focus on the proper representation of:
 - core predicate-argument structures
 - word senses
 - named entities
 - co-reference
Do we need a new meaning representation?

- Existing meaning representations vary a great deal in the “semantic vocabulary” they use:
 - One extreme: no classification of named entities at all (MRS)
 - Other extreme: over 100 types of named entities (AMR)
- Existing meaning representations are often developed based on English / high-resource languages
 - Their structures and workflows therefore pose challenges for the annotation of typologically different languages
In comes UMR

UMR (Uniform Meaning Representation) is an NSF-funded collaborative project between Brandeis University, University of Colorado, and University of New Mexico.

Our starting point is AMR, which has a number of attractive properties:

- Easy to read
- Scalable (does not rely on syntactic structures)
- Information that is important to downstream applications (e.g., semantic roles, named entities and coreference)
- Well-defined mathematical structure (single-rooted, directed, acylical graph)

UMR augments AMR with meaning components that are missing and adapts it to cross-lingual settings.
The starting point: AMR

- Single-rooted, directed, acyclic graph
- Nodes are concepts (sense-disambiguated predicates, named entity types, plain lemmas)
- Edges are relations (participant roles, other semantic relations)

```
(w / want-01  
 :ARG0 (b / boy)  
 :ARG1 (b2 / believe-01  
 :ARG0 (g / girl)  
 :ARG1 b))
```

“The boy wants the girl to believe him.”
Banarescu et al. (2013)
“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.”
“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.”
“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.”
“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.”
“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.”
To make UMR cross-linguistically applicable, it:

- defines a set of language-independent abstract concepts and participant roles,
- uses lattices to accommodate linguistic variability,
- provides meaning-based guidelines for the identification of events,
- designs specifications for complicated mappings between words and UMR concepts,
- is organized as a road map so that languages at different stages of documentation and description can use UMR at an appropriate level of detail.
At the sentence level, UMR adds:

- An Aspect attribute to eventive concepts
- Person and Number attributes for pronouns and other nominal expressions
- A principled set of discourse relations
- Quantification scope between quantified expressions

At the document level UMR adds:

- Temporal dependencies in lieu of tense
- Modal dependencies in lieu of modality
- Coreference relations beyond sentence boundaries
UMR is a cross-lingual meaning representation

- Abstract concepts (e.g., person, thing, have-org-role-91) are uniform across languages
 - Concepts that do not always have explicit lexical support but can be inferred from context
- UMR defines a set of general participant roles (e.g., agent, theme, causer) and non-participant relations that are uniform across languages
- But UMR is still not an Interlingua:
 - Lexical concepts include sense-disambiguated lemmas or simple lemmas and are language-specific (e.g., Mandarin 加入.01 vs. English join-01 vs. Sanapaná empahlkay’a)
 - Languages can define their own lexicalized participant roles (e.g., :ARG0 of 加入.01)
- In general, grammatical meaning is language-independent while lexical meaning is language-specific
“61 岁的 Pierre Vinken 将于 11 月 29 日加入董事会，担任非执行董事。”
“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.”
Abstract concepts in UMR

- Abstract concepts inherited from AMR:
 - Standardization of quantities, dates etc.: have-name-91, have-frequency-91, have-quant-91, temporal-quantity, date-entity...

- New concepts for abstract events: “non-verbal” predication.

- New concepts for abstract entities: entity types are annotated for named entities and implicit arguments.

- Scope: scope concept to disambiguate scope ambiguity to facilitate translation of UMR to logical expressions (see sentence-level structure).

- Discourse relations: concepts to capture sentence-internal discourse relations (see sentence-level structure).
Where do we find abstract eventive concepts?

Semantic type and information packaging (Croft 2001):

<table>
<thead>
<tr>
<th></th>
<th>Reference</th>
<th>Modification</th>
<th>Predication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entities</td>
<td>UNMARKED NOUNS</td>
<td>relative clauses, PPs on nouns</td>
<td>predicate nominals, complements</td>
</tr>
<tr>
<td>States</td>
<td>deadjectival nouns</td>
<td>UNMARKED ADJECTIVES</td>
<td>predicate adjectives, complements</td>
</tr>
<tr>
<td>Processes</td>
<td>event nominals, complements, infinitives, gerunds</td>
<td>participles, relative clauses</td>
<td>UNMARKED VERBS</td>
</tr>
</tbody>
</table>
Where do we find abstract eventive concepts?

- Sentence-level information packaging is not always predicational:
 - *I have a book* - “thetic”, “all-new”, “presentational”
 - *The book belongs to me* - “predicative”, possessee is known information

- AMR does not distinguish these meanings, UMR does only in typically “non-verbal” contexts:
 - Possession
 - Location
 - Object/Property predication
Where do we find abstract eventive concepts?

Languages use different strategies to express these meanings:

- Overt copula: English *I have a book*
- Juxtaposition: Tiwi *ngawa mantani teraka* “Our friend has a wallaby, lit. [As for] our friend, wallaby.”
- Predicativized possessum: Yukaghir *pulundie jowjen’i* “The old man has a net, lit. The old man net-has.”

UMR assumes annotators are able to recognize the semantics of these constructions and select the appropriate abstract predicate and its participant roles.

UMR does not require alignment between concepts and words.
Sample abstract events

<table>
<thead>
<tr>
<th>Clause type</th>
<th>Predicate</th>
<th>ARG0</th>
<th>ARG1</th>
</tr>
</thead>
<tbody>
<tr>
<td>thetic possession</td>
<td>have-03</td>
<td>possessor</td>
<td>possessum</td>
</tr>
<tr>
<td>predicative possession</td>
<td>belong-01</td>
<td>possessum</td>
<td>possessor</td>
</tr>
<tr>
<td>thetic location</td>
<td>exist-91</td>
<td>location</td>
<td>theme</td>
</tr>
<tr>
<td>predicative location</td>
<td>have-location-91</td>
<td>theme</td>
<td>location</td>
</tr>
<tr>
<td>property predication</td>
<td>have-mod-91</td>
<td>theme</td>
<td>property</td>
</tr>
<tr>
<td>object predication</td>
<td>have-role-91</td>
<td>theme</td>
<td>object category</td>
</tr>
<tr>
<td>equational</td>
<td>identity-91</td>
<td>theme</td>
<td>equated referent</td>
</tr>
</tbody>
</table>
Example abstract events

an-yetn-eye' ko'o vakka-hak ah-angkok
2/3F-exist-V1.NFUT 1SG:PRO cow-old/broken 1SG-POS
'I have a book.' lit. 'My book exists.'
(h / have-03
 :ARG0 (p / person
 :ref-person 1st
 :ref-number Singular)
 :ARG1 (v/ vakkahak 'book')
 :aspect State)
Named entities

<table>
<thead>
<tr>
<th>Type</th>
<th>Subtype (AMR NE Type)</th>
</tr>
</thead>
<tbody>
<tr>
<td>person, family, animal, language, nationality, ethnic-group, regional-group, religious-group, political-movement</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>commerical-org (company), political-org (political-party), government-org (government-organization), military-org (military), criminal-org (criminal-organization), academic-org (school, university, research-institute), sports-org (team, league), market-sector</td>
</tr>
<tr>
<td>Geographic-entity</td>
<td>ocean, sea, lake, river, gulf, bay, strait, canal, peninsula, mountain, volcano, valley, canyon, island, desert, forest</td>
</tr>
<tr>
<td>Celestial-body</td>
<td>moon, planet, star, constellation region local-region, country-region, world-region GPE city, city-district, county, state, province, territory, country</td>
</tr>
<tr>
<td>facility</td>
<td>airport, station, port, tunnel, bridge, road, railway-line, canal, building, theater, museum, palace, hotel, worship-place, market, sports-facility, park, zoo, amusement-park</td>
</tr>
<tr>
<td>event</td>
<td>incident, natural-disaster, earthquake, war, conference, game, festival</td>
</tr>
<tr>
<td>product</td>
<td>vehicle, ship, aircraft, aircraft-type, spaceship, car-make, work-of-art, picture, music, show, broadcast-program</td>
</tr>
<tr>
<td>publication</td>
<td>book, newspaper, magazine, journal</td>
</tr>
</tbody>
</table>
Language-independent vs language-specific participant roles

- Core participant roles are defined in a set of frame files (valency lexicon). The semantic roles for each sense of a predicate are defined:
 - E.g. boil-01: apply heat to water
 - ARG0-PAG: applier of heat
 - ARG1-PPT: water

- Most languages do not have frame files. UMR defines language-independent participant roles
 - Based on ValPal data on co-expression patterns of different micro-roles (Hartmann et al., 2013)
Language-independent roles: An incomplete list

<table>
<thead>
<tr>
<th>UMR Annotation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor</td>
<td>Animate entity that initiates the action</td>
</tr>
<tr>
<td>Undergoer</td>
<td>Entity (animate or inanimate) affected by the action</td>
</tr>
<tr>
<td>Theme</td>
<td>Entity (animate or inanimate) moving from one entity to another, spatially or metaphorically</td>
</tr>
<tr>
<td>Recipient</td>
<td>Animate entity that gains possession (or at least temporary control) of another entity</td>
</tr>
<tr>
<td>Force</td>
<td>Inanimate entity that initiates the action</td>
</tr>
<tr>
<td>Causer</td>
<td>Animate entity that acts on another animate entity to initiate the action</td>
</tr>
<tr>
<td>Experiencer</td>
<td>Animate entity that cognitively or sensorily experiences a stimulus</td>
</tr>
<tr>
<td>Stimulus</td>
<td>Entity (animate or inanimate) that is experienced by an experiencer</td>
</tr>
</tbody>
</table>
How UMR accommodates cross-linguistic variability

- Not all languages grammaticalize/overtly express the same meaning contrasts:
 - English: I (1SG) vs. you (2SG) vs. she/he (3SG)
 - Sanapaná: as- (1SG) vs. an-/ap- (2/3SG)

- However, there are typological patterns in how semantic domains get subdivided:
 - A 1/3SG person category would be much more surprising than a 2/3SG one.

- UMR uses lattices for abstract concepts, attribute values, and relations to accommodate variability across languages.
 - Languages with overt grammatical distinctions can choose to use more fine-grained categories.
Semantic categories are organized in “lattices” to achieve cross-lingual compatibility while accommodating variability.

Lattices for Aspect, Modal Strength, Person, Number, Discourse Relations, Modification Relations.
The mapping between words and concepts in languages is not one-to-one: UMR designs specifications for complicated mappings between words and concepts.

- Multiple words can map to one concept (e.g., multi-word expressions)
- One word can map to multiple concepts (morphological complexity)
Multiple words map to one concepts

UMR is working on consistent standards for annotating MWEs cross-linguistically

(i / intrigue-01 :Aspect Performance :ARG0 (a / aspect :ARG1-of (m / moral-02) :poss (m2 / movement-07)) :ARG1 (h / he) :mod (a2 / as-well))

(x0/敲竹杠-01 :arg0 (x1/他) :arg1 (x2/人) :mod (x3/老) :mod (x4/可怜) :mod (x5/那) :cunit (x6/个)))

The moral aspects of the movement intrigued him as well 对那个可怜的老人，他还敲竹杠。
Concepts can map to words that are discontinuous

地理学帮了我很大的忙。

“Why would he want to give that up?”
One word maps to multiple UMR concepts

► One word containing predicate and arguments

Sanapaná:
yavhan anmen m-e-l-yen-ek
honey alcohol NEG-2/3M-DSTR-drink-POT
"They did not drink alcohol from honey."

(e / elyama
 :Actor (p / person
 :Ref-person 3rd
 :Ref-number PL)
 :Undergoer (a / anmen
 :Material (y/ yavhan))
 :Modstr FULLNEG
 :Aspect Habitual)

► Argument Indexation: Identify both predicate concept and argument concept, don’t morphologically decompose word
One word maps to multiple UMR concepts

- One word containing predicate and arguments

 Arapaho:

 he’ih’iixooxookbixoh’oekoohuutoono’
 he’ih’ii-xoo-xook-bixoh’oekoohuutoo-no’
 NARR.PST.IPFV-REDUP-through-make.hand.appear.quickly-PL
 ‘“They were sticking their hands right through them [the ghosts] to the other side.’’

 (b/ bixoh’oekoohuutoo ‘stick hands through’
 :Actor (p/ person :ref-person 3rd :ref-number PL)
 :Theme (h/ hands)
 :Undergoer (g/ [ghosts])
 :Aspect Endeavor
 :Modstr FULLAFF)

- Noun Incorporation (less grammaticalized): identify predicate and argument concept
One word maps to multiple UMR concepts

- One word containing predicate and arguments

Arapaho:

hoono’ nuhu’ tihciinii’eihiiinit, he’ih’etoocein nuhu’ hitiine’ nuhu’ hoote
hoono’ nuhu’ tih-cii-nii’eihiiini-t,
not.yet this when.PST-NEG-be.eagle-3S
he’ih’-etoocein
NARR.PST-pull.rope-like.thing.out this 3S-mouth-LOC this sinew
``At the [time] when he wasn't yet an eagle,
he took [it] out of his mouth, the sinew.‘’

(e/ 'etoocein ‘pull rope-like thing out’
 :Actor (p/ person :ref-person 3rd :ref-number SG)
 :Theme (h/ hoote ‘sinew’)
 :Source (h2/ hitiine’ ‘mouth’
 :part-of p)
 :Aspect Performance
 :Modstr FULLAFF)

- Noun Incorporation (more grammaticalized): identify predicate, ID argument only if independently expressed
One word maps to multiple UMR concepts

- Derivational valency-changing morphology vs. auxiliaries

Kukama:

nai kurata-ta churan=ui uni-pu
grandmother drink-CAUS kid-PST water-INST
``Grandmother made the kid drink the water.''

(k/ kuratata `make drink’
 (d/ drink
 (k/ kid)
 :Actor (g/ grandmother)
 :Aspect Performance
 :Modstr FULLAFF)
 :Actor (g/ grandmother)
 :Aspect Performance
 :Modstr FULLAFFf)
 :Actor (g/ grandmother)
 :Aspect Performance
 :Modstr FULLAFF)
 :Actor (g/ grandmother)
 :Aspect Performance
 :Modstr FULLAFF)

- Independent negation test to judge if there are two events
One word maps to multiple UMR concepts

- Derivational TAM morphology vs. auxiliaries

Arapaho:

ceesisnō‘oebiicitiit
cees-nōo‘oe-biici-tiit
IC.begin-around-bead.st-3S
``She is starting to bead around it.``

(b/ biici-tiit `bead st.')

:Actor (p/ person
 :refer-person 3rd
 :refer-number SG)
:Undergoer (t/ thing)
:Aspect Activity
:Modstr FULLAFF)

(b/ bead st.

:Actor (p/ person
 :ref-person 3rd
 :ref-number SG)
:Undergoer (t/ thing)
:Aspect Activity
:Modstr FULLAFF)

- Aspect: not identified as separate event regardless of morphosyntactic expression
One word maps to multiple UMR concepts

- Derivational TAM morphology vs. auxiliaries

Arapaho:

xonouu niibeetwon3eiinein
xonouu nii-beet-won-3eitn-ein
immediately IPFV-want-ALL-put.inside.a.place-3S/2S
``Right away he wants to go and put you in jail.''

(b/ beetwon3eiin ‘want to go and put s.t. inside a place’ (w/ want
 :Actor (p/ person
 :refer-person 3rd
 :refer-number SG)
 :Theme (p/ person
 :refer-person 2nd
 :refer-number SG)
 :Aspect Habitual
 :Modstr NEUTAFF)

- Semi-modals: Independent modalization test to judge if there are two events
One word maps to multiple UMR concepts

Sanapaná:

apk-el-vet-angv-ay-akm-e’ hlema nenhlet
2/3M-DSTR-see-arrive-TI-TRM-V1 one person
‘They arrived and saw a person.’

(v/ engvetangvayam ‘arrive and see’ (a/ and
:Experiencer (p/ person
 :ref-person 3rd
 :ref-number PL)
 :Stimulus (p2/ person)
 :Aspect State
 :Modstr FULLAFF)

:op1 (a2/ arrive
 :Actor (p/ person
 :ref-person 3rd
 :ref-number PL)
 :Aspect Performance
 :Modstr FULLAFF)

:op2 (s/ see
 :Experiencer p
 :Stimulus (p2/ person
 :Aspect State
 :Modstr FULLAFF))

▶ Associated Motion: Independent argument structure test
to judge if there are two events
Lexical resources and grammatical analysis is not available for many languages.

UMR aims to be available for semantic annotation of languages from the very beginning of analysis. It is therefore structured as a “Road Map”

- Early stages of Road Map must not rely on availability of resources or analysis
- Annotations at earlier stages must still be compatible with more fine-grained annotations at later stages
Road Map

- **Participant Roles:**
 - Stage 0: General participant roles
 - Stage 1: Language-specific frame files
 - UMR-Writer allows for the creation of lexicon with argument structure information during annotation

- **Morphosemantic Tests:**
 - Stage 0: Identify one concept per word
 - Stage 1: Apply more fine-grained tests to identify concepts

- **Annotation Categories with Lattices:**
 - Stage 0: Use grammatically encoded categories (more general if necessary)
 - Stage 1: Use (overtly expressed) fine-grained categories

- **Modal Dependencies:**
 - Stage 0: Use simplified modal annotation
 - Stage 1: Fill in lexically based modal strength values
An *Aspect* attribute to event concepts

Aspect refers to the internal constituency of events - their temporal and qualitative boundedness

Person and **number** attributes for pronouns and other nominal expressions

A set of concepts and relations for discourse relations between clauses

Quantification scope between quantified expressions to facilitate translation of UMR to logical expressions
UMR attribute: aspect

- **Aspect**
 - Habitual
 - Imperfective
 - Process
 - Imperfective
 - Perfective

- **Activity**
 - Atelic Process
 - Perfective
 - Performance

- **Endeavor**
 - Undirected Endeavor
 - Directed Endeavor

- **State**
 - Reversible State
 - Irreversible State
 - Inherent State
 - Point State

- **Performance**
 - Incremental Accomplishment
 - Nonincremental Accomplishment
 - Directed Achievement

- **Reversible**
 - Irreversible
UMR attribute: aspect

- **State**: unspecified type of state
- **Habitual**: an event that occurs regularly in the past or present, including generic statements
- **Activity**: an event that has not necessarily ended and may be ongoing at Document Creation Time (DCT).
- **Endeavor**: a process that ends without reaching completion (i.e., termination)
- **Performance**: a process that reaches a completed result state
UMR attribute: aspect

- Habitual?
 - Yes: HABITUAL
 - No: Stative?
 - Yes: STATE
 - No: Evidence that event ended?
 - Yes: IMPERFECTIVE
 - No: ATELIC PROCESS
 - Unsure: Terminative auxiliary?
 - Yes: ENDEAVOR
 - Yes: PERFECTIVE
 - No: PERFORMANCE
 - No: Container adverb?
 - Yes: PERFORMANCE
 - No: Non-result path?
 - Yes: PERFECTIVE
 - No: PERFORMANCE
He denied any wrongdoing.

(d / deny-01
 :Aspect Performance
 :ARG0 (p / person)
 :ref-person 3rd
 :ref-number Singular
 :ARG1 (t / thing
 :ARG1-of (d2 / do-02
 :ARG0 h
 :ARG1-of (w / wrong-02
 :Aspect Process)))
Coarse-grained Aspect as an UMR attribute

He wants to travel to Albuquerque.

(w / want
Aspect: state)

She rides her bike to work.

(r / ride
Aspect: habitual)

He was writing his paper yesterday.

(w / write
Aspect: activity)

Mary mowed the lawn for thirty minutes.

(m / mow
Aspect: endeavor)
My cat is hungry. My cat is black and white.

(h / have-mod-91
 Aspect: reversible state)

(h / have-mod-91
 Aspect: inherent state)

The wine glass is shattered.

It is 2:30pm.

(h / have-mod-91
 Aspect: irreversible state)

(h / have-mod-91
 Aspect: point state)
AMR vs UMR on how pronouns are represented

- In AMR, pronouns are treated as unanalyzable concepts
- However, pronouns differ from language to language, so UMR decomposes them into person and number attributes
- These attributes can be applied to nominal expressions too

AMR:
(s / see-01
 :ARG0 (h/ he)
 :ARG1 (b/ bird
 :mod (r/ rare)))

“He saw rare birds today.”

UMR:
(s / see-01
 :ARG0 (p / person
 :ref-person 3rd
 :ref-number SG)
 :ARG1 (b / bird
 :mod (r/ rare)
 :ref-number Plural))
UMR attributes: Person and number

Person
 Non-third
 Non-first
 Second
 First
 Inclusive
 Exclusive
 Third
UMR attributes: Person and number
Person/Number values can be applied uniformly across languages

(e / entoma-00 'eat'
 :Actor (p / person
 :ref-person Non-1st
 :ref-number Plural)
 :Undergoer (t / thing
 :ref-number Singular)
 :Aspect Performance
 :Modstr FULLNEG)

m-e-hl-t-om-o=hlta
NEG-2/3M.IRR-DSTR-eat-TI-IPFV=PHOD
“They did not eat it.”
Discourse relations in UMR

- In AMR, there is a minimal system for indicating relationships between clauses - specifically coordination:
 - *and* concept and :opX relations for addition
 - *or/either/neither* concepts and :opX relations for disjunction
 - *contrast-01* and its participant roles for contrast

- Many subordinated relationships are represented through participant roles, e.g.:
 - :manner
 - :purpose
 - :condition

- UMR makes explicit the semantic relations between (more general) “coordination” semantics and (more specific) “subordination” semantics
Discourse relations in UMR

- inclusive-disj
- exclusive-disj
- or
- and
- and + but
- and + unexpected
- and + contrast
- unexpected co-occurrence
- additive
- consecutive
- :apprehensive
- :condition
- :cause
- :purpose
- :temporal
- :manner
- :pure-addition
- :substitute-01
- :concession
- :concessive-condition
- contrast-01
- :apprehensive
Discourse relations in UMR

Discourse relations can be applied uniformly across languages:

(a/ and
 :op1 (e/ enya’hlemmahlka’
 :Undergoer (t/ thing)
 :Aspect Habitual
 :Modstr FULLAFF)
 :op2 (e2/ ennanemmahlka’
 :Material t
 :Undergoer (t2/ thing
 :Undergoer-of (e3/ entoma))
 :Aspect Habitual
 :Modstr FULLAFF))

ko-ya’hl-ahlk-a’an-nan-emm-ahlk-a’en-t-om-a
2/3F-skewer-PAS-PFV 2/3F-make-TI-PAS-PFV 1PL-eat-TI-PFV
“It would be skewered and made into food.”
Discourse relations can be applied uniformly across languages:

(e/ empengkenammahlka’
 :Theme (t/ thing)
 :Purpose (e2/ entavekakha’
 :Actor (p/ person :Ref-person 1st :Ref-number PL)
 :Undergoer t
 :Mod (m/ mokham)
 :Aspect Habitual
 :Modstr FULLAFF)
 :Aspect Habitual
 :Modstr FULLAFF)

ko-pengken-ahlk-a’ en-tav-ayk-akh-a=la mokham
2/3F-put-PAS-PFV 1PL-eat-TI-DUPL-PFV=HYP again
“It would be put aside to eat again another day.”
“Someone didn’t answer all the questions”

(a / answer-01
 :ARG0 (p / person)
 :ARG1 (q / question :quant All :polarity -)
 :pred-of (s / scope :ARG0 p :ARG1 q))

\[\exists p(\text{person}(p) \land \neg \forall q(\text{question}(q) \rightarrow \exists a(\text{answer-01}(a) \land \text{ARG1}(a, q) \land \text{ARG0}(a, p))))\]
UMR document-level representation

- Temporal relations are added to UMR graphs as temporal dependencies
- Modal relations are also added to UMR graphs as modal dependencies
- Coreference is added to UMR graphs as identity or subset relations between named entities or events
No representation of tense in AMR

▶ "She talked to him in French."
▶ "She is talking to him in French."
▶ "She will talk to him in French."
Adding tense to AMR involves defining a temporal relation between event-time and the Document Creation Time (DCT) or speech time (Donatelli et al 2019).

```
(t / talk-01
 :time (b / before
 :op1 (n / now)))
 :ARG0 (s / she)
 :ARG2 (h / he)
 :medium (l / language
 :name (n / name
 :op1 "French")))
```

“She talked to him in French.”
... but it isn’t

- For some events, its temporal relation to the DCT or speech time is undefined. “John said he would go to the florist shop”.
 - Is “going to the florist shop” before or after the DCT?
 - Its temporal relation is more naturally defined with respect to “said”.

- In quoted speech, the speech time has shifted. “I visited my aunt on the weekend,” Tom said.
 - The reference time for “visited” has shifted to the time when Tom said this. We only know the “visiting” event happened before the DCT indirectly.

- Tense is not universally grammaticalized, e.g., Chinese
Limitations of simply adding tense

- Even in cases when tense, i.e., the temporal relation between an event and the DCT is clear, tense may not give us the most precise temporal location of the event.
 - John *went* into the florist shop.
 - He *had promised* Mary some flowers.
 - He *picked out* three red roses, two white ones and one pale pink
 - Example from (Webber 1988)

- All three events happened before the DCT, but we also know that the “going” event happened after the “promising” event, but before the “picking out” event.
A structured approach to temporal interpretation

We can’t properly interpret temporal relations without a clear notion of *reference time*. UMR proposes to:

- Explicitly represent the temporal location of an event as a relation between the event and its reference time
- In addition to the speech time or DCT, possible reference times also include other events, time expressions, or a general past, present, or future reference
- Events and their reference times will form a dependency graph with events and time expressions as nodes and temporal relations as edges

Zhang and Xue (2018); Yao et al. (2020)
Identifying reference times for events

- Reference time is the DCT
 - The Pentagon said today that it will re-examine the question.
 - DCT → said
 - The Pentagon said today that it would re-examine the question.
 - said → re-examine
The reference time of an event is another event

- John went into the florist shop. He had promised Mary some flowers. He picked out three red roses, two white ones and one pale pink
- went → had promised
- went → picked out
If we identify a reference time for every event and time expression in a document, the result will be a Temporal Dependency Graph.

“700 people descended on the state Capitol today, according to Michigan State Police. State Police made one arrest, where one protester had assaulted another, Lt. Brian Oleksyk said.”
The temporal dependency structure annotation involves identifying the most specific reference time for each event.

Time expressions and other events are normally the most specific reference times.

In some cases, an event may require two reference times in order to make its temporal location as specific as possible.

On Monday, Bill ate breakfast and then went hiking.

Diagram:
- Monday
- Includes:
 - ate
 - After
 - hiking
If an event is not clearly linked temporally to either a time expression or another event, then it can be linked to the DCT or tense metanodes.

- Tense metanodes capture vague stretches of time that correspond to grammatical tense:
 - Past_Ref, Present_Ref, Future_Ref
- DCT is a more specific reference time than a tense metanode.
Temporal relations function differently depending on the genre of the text (e.g., Smith 2003).

Certain genres proceed in temporal sequence from one clause to the next.

While other genres involve generally non-sequenced events.

News stories are a special type:
- many events are temporally sequenced
- temporal sequence does not match with sequencing in the text
TDS Annotation

- Annotators consider the genre of the text in making decisions about the temporal annotation.
- A single document may have stretches in different genres.
TDS Annotation

- Narrative
 - Episodic events are temporally sequenced and presented (mostly) in order in the text
 - Reference time for events
 - Time expression in the same line
 - Event in immediately preceding line
“Habitual narratives”

- Temporally sequenced habitual events
- First event in this genre may be linked to a time expression if available
- Reference time for subsequent events
 - Event in immediately preceding line
Non-sequenced events

- Often states or habitual events that act as a description of a scene
- First event in this genre may be linked to a time expression if available
- Reference time for subsequent events
 - DCT or tense metanodes
- Since the events are not temporally sequenced with each other, the most specific reference is often the tense metanodes
The events that are being reported have a clear temporal sequence.
But often this does not follow the sequencing of events in the text.
Main clauses in news stories are often quotes with attribution to sources.
 - the reporting events themselves have the DCT or a time expression as a reference time.
Reported events in a quote
 - treated like narrative
 - linked to time expressions or other events in the same quote.
Annotators may also consider the modal annotation when annotating temporal relations.

Events in the same modal “world” can be temporally linked to each other.

Events that occur in non-real mental spaces are rarely linked temporally to events in the “real world”.

Exception to this are deontic complement-taking predicates:

- Events in the complement are temporally linked to the complement-taking predicate
- E.g. I want to travel to France: After (want, travel)
Modality in AMR

- Modality characterizes the reality status of events, without which the meaning representation of a text is incomplete.
- AMR has six concepts that represent modality:
 - possible-01, e.g., “The boy can go.”
 - obligate-01, e.g., “The boy must go.”
 - permit-01, e.g., “The boy may go.”
 - recommend-01, e.g., “The boy should go.”
 - likely-01, e.g., “The boy is likely to go.”
 - prefer-01, e.g., “They boy would rather go.”
- Modality in AMR is represented as senses of an English verb or adjective.
- However, the same exact concepts for modality may not apply to other languages.
Modal dependency structure

- Modality is represented as a dependency structure in UMR
 - Similar to the temporal relations
- Events and conceivers (sources) are nodes in the dependency structure
- Modal strength and polarity values characterize the edges
 - Mary might be walking the dog.
Modal dependency structure

- A dependency structure:
 - Allows for the nesting of modal operators (scope)
 - Allows for the annotation of scope relations between modality and negation
 - Allows for the import of theoretical insights from Mental Space Theory (Fauconnier 1994, 1997)
The mental space theory is a semantic representation of alternative realities, which includes modality.

These alternative realities, called mental spaces, are cognitive, i.e. they exist within a conceiver’s mind.

Certain linguistic items are space builders that place events within a non-real mental space.

- Grammaticalized modals
- Negation
- Predicates of belief, desire, intention, etc.

Mental spaces can be nested within other mental spaces, which is necessary in order to capture scope relations between modals, negation, and space-building predicates.

A dependency structure is able to capture this nesting straightforwardly.
There are two types of nodes in the modal dependency structure: events and conceivers.

Conceivers
- Mental-level entities whose perspective is modelled in the text
- Each text has an author node (or nodes)
- All other conceivers are children of the AUTH node
- Conceivers may be nested under other conceivers

Mary said that Henry wants...
“WBUR: A man in his 20s from Worcester County tested positive Tuesday for the new, apparently more contagious coronavirus variant, public health officials said. The variant was first detected in the United Kingdom, and experts have warned that it could soon become widespread in the U.S.”

Is the event “testing positive” as credible if it comes from your neighbor?
Modal dependency structure

- Edges in the dependency structure correspond to epistemic strength and polarity

- Epistemic strength values are based on Boye (2013)’s typological work on modality

- Boye (2013) finds that most modal systems in the world’s languages can be characterized in terms of three levels of epistemic strength: full, partial, and neutral

- In order to account for variations across languages, we have incorporated Boye’s observations into a lattice of epistemic strength values
Epistemic strength lattice

- **Full**: The dog barked.
- **Partial**: The dog probably barked.
- **Neutral**: The dog might have barked.
Different types of modality

These same modal values can also be used to characterize other types of modality, outside of just epistemic strength

Evidential

Boyé (2012) finds that, cross-linguistically, evidential justification corresponds to epistemic support

Full: *I saw Mary feed the cat.*
Partial: *Mary must have fed the cat.*
Neutral: not applicable

Deontic

Corresponds to the likelihood of occurrence of the future event

Full: *Bill will drive to Pisa.*
Partial: *Bill is planning* to drive to Pisa.
Neutral: *Bill wants* to drive to Pisa.
The interaction of modality and polarity

- Modality and polarity are represented together in an edge value (Vigus et al. 2019)

- These edge values represent negation as inside the scope of modality

<table>
<thead>
<tr>
<th>Label</th>
<th>Value</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULLAFF</td>
<td>full affirmative</td>
<td>The dog barked</td>
</tr>
<tr>
<td>PARTAFF</td>
<td>partial affirmative</td>
<td>The dog probably barked</td>
</tr>
<tr>
<td>NEUTAFF</td>
<td>neutral affirmative</td>
<td>The dog might have barked</td>
</tr>
<tr>
<td>NEUTNEG</td>
<td>neutral negative</td>
<td>The dog might not have barked</td>
</tr>
<tr>
<td>PARTNEG</td>
<td>partial negative</td>
<td>The dog probably didn’t bark</td>
</tr>
<tr>
<td>FULLNEG</td>
<td>full negative</td>
<td>The did not bark</td>
</tr>
</tbody>
</table>
The dependency structure can model nested sources and nested modals (Vigus et al., 2019; Yao et al., 2021):

1. “Mary might have walked the dog.”
2. “John thinks the cat is hungry.”
3. “Mary said that Henry told her that John thinks the cat is hungry.”
Modal dependency structure

- The dependency structure can model nested sources and nested modals (Vigus et al., 2019; Yao et al., 2021):

```
ROOT
  MODAL
    MODAL
      AUTH
        AFF
          MARY
            NEUT
              need
                PRT
                  check
```

Mary might need to check the weather.
“700 people descended on the state Capitol today, according to Michigan State Police. State Police made one arrest, where one protester had assaulted another, Lt. Brian Oleksyk said.”
Although the representation of modality in UMR is a dependency structure, annotators don’t build the dependency directly.

The sentence-level UMR contains extractable information about modal dependencies.

Annotators use a simplified system to fill in modal information at the sentence level.

This is then automatically converted into a partially-specified modal dependency structure.
There are three simplified modal annotations:

- MODSTR: relates an event with one of the modal edge values
- MOD: relates a modal predicate with its complement
- QUOT: relates a speech predicate with the reported events
MODSTR indicates that the event is linked to the AUTH node with the annotated modal edge value

(w/ walk-01
 :ARG0 (p / person
 :ref-person 3rd
 :ref-number SG)
 :ARG1 (d / dog)
 :Modstr NEUTAFF)

She might have walked the dog.
Simplified Modal Annotation

- MOD indicates that the modal complement is a child of the modal predicate in the dependency structure.
- The Experiencer or ARG0 of the modal predicate is identified as a conceiver.
- The modal predicate receives a MODSTR annotation as well, indicating the author’s certainty about the conceiver’s beliefs.
- At Stage 0, the modal strength imparted by the predicate on its complement is left unspecified.
She wanted to walk the dog.
Simplified Modal Annotation

- QUOT links speech predicates and the events that they report
- The Actor or ARG0 of the speech predicate is identified as a conceiver
- The MODSTR of the speech predicate represents the author’s certainty about the speaker’s beliefs
- The MODSTR of the reported events indicates the speaker’s certainty towards those events
She said that he might have walked the dog.
Entity Coreference in UMR

▶ same-entity:

1. Edmund Pope tasted freedom today for the first time in more than eight months.
2. He denied any wrongdoing.

▶ subset:

1. He is very possessive and controlling but he has no right to be as we are not together.
Event coreference in UMR

same-event

1. El-Shater and Malek’s property was confiscated and is believed to be worth millions of dollars.
2. Abdel-Maksoud stated the confiscation will affect the Brotherhood’s financial bases.

same-event

1. The Three Gorges project on the Yangtze River has recently introduced the first foreign capital.
2. The loan, a sum of 12.5 million US dollars, is an export credit provided to the Three Gorges project by the Canadian government, which will be used mainly for the management system of the Three Gorges project.

subset:

1. 1 arrest took place in the Netherlands and another in Germany.
2. The arrests were ordered by anti-terrorism judge fragnoli.
An UMR example with coreference

He is controlling but he has no right to be as we are not together.

(s4c / contrast-01
 :ARG1 (s4c3 / control-01
 :ARG0 (s4p2 / person
 :ref-person 3rd
 :ref-number Singular)
 :degree (s4v / very))
 :ARG2 (s4r / right-05
 :ARG1 s4p2
 :ARG1-of (s4c2 / cause-01
 :ARG0 (s4h / have-mod-91
 :ARG0 (s4p3 / person
 :ref-person 1st
 :ref-number Plural)
 :ARG1 (s4t/ together)
 :Aspect State
 :Modstr Fullneg))
 :Modstr Fullneg))

(s / sentence
 :coref ((s4p2 :subset-of s4p3)))
Implicit arguments can be inferred from context and can be annotated for coreference like overt (pronominal) expressions.

He denied any wrongdoing.
The challenge: Integration of different meaning components into one graph

- How do we represent all this information in a unified structure that is still easy to read and scalable?
- UMR pairs a sentence-level representation (a modified form of AMR) with a document-level representation.
- We assume that a text will still have to be processed sentence by sentence, so each sentence will have a fragment of the document-level super-structure.
1. Edmund Pope tasted freedom today for the first time in more than eight months.

2. Pope is the American businessman who was convicted last week on spying charges and sentenced to 20 years in a Russian prison.

3. He denied any wrongdoing.
Edmund Pope tasted freedom today for the first time in more than eight months.
Sentence-level representation vs document-level representation

Pope is the American businessman who was convicted last week on spying charges and sentenced to 20 years in a Russian prison.

(s2b2 / businessman
 :Aspect State
 :mod (s2c5 / country
 :name (s2n6 / name :op1 "America"))
 :domain (s2p / person
 :name (s2n5 / name :op1 "Pope"))
 :ARG1-of (s2c4 / convict-01
 :Aspect Performance
 :ARG2 (c / charge-05
 :ARG1 s2b2
 :ARG2 (s2s2 / spy-01 :ARG0 s2p)
 :time (s2w / week :mod (s2l / last)))
 :ARG1-of (s2s / sentence-01
 :Aspect Performance
 :ARG2 (s2p2 / prison
 :mod (s2c3 / country
 :name (s2n4 / name :op1 "Russia"))
 :duration (s2t3 / temporal-quantity
 :quant 20
 :unit (s2y2 / Year)))
 :ARG3 s2s2))
He denied any wrongdoing.

(s3d / deny-01
 :Aspect Performance
 :ARG0 (s3p / person
 :ref-number Singular
 :ref-person 3rd)
 :ARG1 (s3t / thing
 :ARG1-of (s3d2 / do-02
 :ARG0 s3p
 :ARG1-of (s3w / wrong-02))))

(s3 / sentence
 :temporal ((s3d :before DCT))
 :modal ((s3d :AFF AUTH)
 (s3d2 :NEG
 (s3p :AFF AUTH)))
 :coref ((s3p :same-entity s1p))
“Edmund Pope tasted freedom today for the first time in eight months.”

“Pope was convicted on spying charges and sentenced to 20 years in a Russian prison.”

“He denied any wrong-doing.”
UMR writer: Project management

Projects

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Status</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>default_project (admin)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>default_project (view)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All Documents

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Status</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>exported_pear-stories-1-for-umr-tool_1.txt (default_project)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
UMR writer: Sentence-level interface
UMR writer: Lexicon interface
UMR Writer: Document-level interface
Discussion question: Do we still need symbolic meaning representations?

- End-to-end neural models changed the landscape of NLP, e.g., Neural MT, machine reading => diminished returns for linguistic structures as an intermediate representation in some end-to-end systems

- However, neural models do have their limitations:
 - hard to interpret
 - hard to anticipate errors
 - not naturally suited for logical/quantitative reasoning that humans routinely perform

- Systems based on symbolic meaning representations can provide a viable alternative

- Hard NLP problems cannot be solved without world knowledge. A general purpose symbolic meaning representation can be used to distill structured knowledge from natural language text
Adapting to the new environment when developing linguistic resources

- Do not design meaning representations as an intermediate representation, but rather as an end (or near-end) representation.

- Support applications where neural models do not provide a good solution.
 - Temporal reasoning that answers questions that cannot answered with a machine reading approach (not no comprehension).
Use cases of UMR

- **Temporal reasoning**
 - UMR can be used to extract temporal dependencies, which can then be used to perform temporal reasoning.

- **Knowledge extraction**
 - UMR annotates aspect, and this can be used to extract habitual events or state, which are typical knowledge forms.

- **Factuality determination**
 - UMR annotates modal dependencies, and this can be used to verify the factuality of events or claims.

- **As intermediate representation for dialogue systems where control is more needed.**
 - UMR annotates entities and coreferences, which helps tracking dialogue states.
UMR summary

- UMR is a rooted directed node-labeled and edge-labeled document-level graph.

- UMR is a document-level meaning representation that builds on sentence-level meaning representations.

- UMR aims to achieve semantic stability across syntactic variations and support logical inference.

- UMR is a cross-lingual meaning representation that separates language-general aspects of meaning from those that are language-specific.

- We are testing UMR English, Chinese, Arabic, Arapaho, Kukama, Sanapana, Navajo.
References

