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Alexa ASR Science
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We do In-Cloud, On-Device and In-Car ASR for
• Human-Machine Interactions (e.g., Alexa)
• Human Speech Transcription (e.g., Voice Search)
• Human-Human-Machine Conversations (e.g., Alexa Conversations)

Where we are:
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Daniel Willett
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Alexa enabled Products
We build ASR for …

• Headless devices

• Multi-modal devices

• Smart remotes

• Mobile

• Auto

• Wearables

• Robots
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Select On-device Spoken Language Understanding Topics

Agenda

• Birds eye view: Finite State Transducer to Neural Transducer ASR

• Dynamic Adaptation and Personalization

• E2E Speech To Understanding

• Edge Processing – Small Footprint ASR
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Finite State Transducer (FST) Based ASR

HMM with Neural Acoustic Models
(since 2012)
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Neural Transducer Based ASR

Speech Signal
30ms Alexa w…

Al_- _exa- - --

Audio Encoder Prediction Network

Joint Network

Softmax
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Neural Transducer Based ASR – Pros/Cons

Pros

• End-to-end optimizable

• Representation Learning

• Multi-Task Learning

• (Theoretically) Open Vocabulary

• Accuracy wins

Cons

• Not easy to train

• Expensive to train
(4-5 weeks on 96 GPUs)

• Rare words are challenging

• Personalization is challenging

• Hotfixing is challenging

H. Tulsiani et al., “Improved training strategies for end-to-end speech recognition in digital voice assistants”, Interspeech 2020

E. Lakomkin et al., “Subword regularization: an analysis of scalability and generalization for end-to-end automatic speech recognition”, Interspeech 2022
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Dynamic Adaptation and Personalization

• Difficulty Recognizing uncommon/rare words & phrases (All neural models thrive from data)

• Boost personalized entities and catalogs
(ContactNames, PlayList, etc.)

• Domain adaptation

• Usage shifts overtime

• Need to support new domains and use cases (cold-start problem) (text-only adaptation)

When is movie “X” coming to the theatres?
Call “Y” on his/her cellphone.
Play my “Z” playlist from Spotify.

Contact Name 
Catalog

Device Name 
Catalog

Album Name 
Catalog 
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Generate Lattice

Dynamic Adaptation and Personalization

Core RNN-T
(1st pass)

Neural LM Rescoring
(2nd pass)

Shallow Fusion Attention-based 
Neural Biasing

Audio Encoder

Lattice Encoder

who is brad pitt

who is brand bid

who is frank did

……

N-best Hypotheses

6.8

24.6

43.8

……
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Dynamic Adaptation and Personalization
Attention-based Neural Biasing

Encoded representation per entity

Audio Encoder Prediction Network

Joint Network

Softmax
Neural
Transducer _

alexa turn on        lily’s room 
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Dynamic Adaptation and Personalization
Attention-based Neural Biasing

Encoded representation per entity

Audio Encoder Prediction Network

Joint Network

Softmax
Neural
Transducer _ _ _ _ alexa
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Dynamic Adaptation and Personalization
Attention-based Neural Biasing

Audio Encoder Prediction Network

Joint Network

Softmax
Neural
Transducer alexa turn on lily’s room 

basement light
kitchen tv
lily’s room
ceiling fan
ben’s room

Personalized Device Names
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basement light

Dynamic Adaptation and Personalization

Audio Encoder Prediction Network

Joint Network

Softmax
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Transducer alexa
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Attention-based Neural Biasing
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• 40% WER Reduction on proper names 

Attention-based Neural Biasing
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E2E Speech To Understanding
Conventional Spoken Language Understanding (SLU) System 

Drawbacks of a Modular SLU System with Independent ASR & NLU Models

Independent 
Training

Training Errors 
Are Propagated

Each Error Treated
Equally

❌ “turn on the light”, 
✅ “turn on the light”, 
❌ “turn on the light”
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E2E Speech To Understanding
Tighter integration for 

• Produce an SLU output directly from the speech signal input
• Either trained with a single optimization objective or jointly optimized end-to-end
• “Error-Robust” as well as “Resource Efficient”
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Neural-Interface

E2E Speech To Understanding

M. Rao, A. Raju, P. Dheram, B. Bui, A, Rastrow, “Speech to Semantics: Improve ASR and NLU Jointly via All-Neural Interfaces,”, Interspeech 2020
A. Raju, G. Tiwari, et al., “End-to-end Spoken Language Understanding using RNN-Transducer ASR,” arXiv preprint arXiv:2106.15919, 2021.

RNN-T
(ASR) NLU

Text Interface
RNN-T
(ASR) NLU

turn on the kitchen lights

Backprop NLU loss & improve ASR
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E2E Speech To Understanding

Neural-Interface
RNN-T
(ASR) NLU

Backprop NLU loss & improve ASR

Single Stage Streamable SLU
ASR + NLU

Beam Search on (wp, slots)

X. Fu, F. Chang, M. Radfar, K. Wei, J. Liu, G. Strimel, K. M. Sathyendra, “Multitask RNN-T with Semantic Decoder for Streamable Spoken Language Understanding,” ICASSP 2022

Model Loss Type WERR SemERR IRERR ICERR

Two-stage SLU - 0 0 0 0

Multi-task Semantic RNN-T
𝐿௧ 𝑤𝑝 + 𝐿 𝑠𝑙𝑜𝑡 + 𝐿 𝑠𝑙𝑜𝑡 1.41 9.49 14.38 5.13

𝐿௧ 𝑤𝑝 + 𝐿௧, 𝑠𝑙𝑜𝑡 + 𝐿 𝑠𝑙𝑜𝑡 -0.99 7.43 12.04 -1.26
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E2E SLU - Dialog Context Carry-Over

K. Wei et al., “Attentive contextual carryover for multi-turn end-to-end spoken language understanding”, ASRU 2021

Relative Error Reduction

WERR ICERR SemERR

E2E T-T SLU 0% 0% 0%

+ dialog act 5.4% 4.6% 1.5%

+ prev. utterance 12.4% 8.9% 6.3%

+ both 13.8% 11.1% 10.6%

Transformer-based SLU w/ Context Carry-Over

• BERT embedding for transcription

• Multi-Head Attention with Gating

for combining context

• Industrial Voice Assistant (IVA) Data Set
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Edge Processing – Small Footprint ASR & SLU
Legacy factored HMM End-to-end all-neural

• N-grams are memory inefficient

• Sub-optimal accuracy-vs-footprint curve 
(disjoint models)

• Far better accuracy-vs-footprint curve

• Uniform application of compression, quantization 
and sparsification methods

• 8-bit (and even 5-bit) quantization-aware training

• Architecture variation and choices
• LSTM -> LSTM-P

100x compression
Deep

Neural
Network

Finite
State

Transducer

Language
Model

(N-gram)

Pronunciation
Lexicon

Phonetic
Decision Tree

Acoustic Model
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Edge Processing – Small Footprint ASR & SLU

Quantize-Aware Training via Regularization

ML Model
Calculate 
Accuracy 

Loss/Reward

Training Data

Feedback to update model

Proposed Component 
Calculate Quantization 

Loss/Reward

Best weights = 

Achieve 8-bit (and sub 8-bit) 

Hieu Nguyen et all, “Quantization aware training with absolute-cosine regularization for automatic speech recognition,” Interspeech 2020



© 2022, Amazon.com, Inc. or its affiliates. All rights reserved.

J. Macoskey et all, "Bifocal Neural ASR: Exploiting Keyword Spotting for Inference Optimization," ICASSP 2021

Edge Processing – Small Footprint ASR

Hey    Alexa,               turn        on        the.      light.
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Edge Processing – Small Footprint ASR

Generate 
N-best list/Lattice

Neural Transducer 
(RNN-T)

Neural Rescorer
(text + lattice)

Neural LM Rescorer
(text)

Generate 
N-best list/Lattice

On-device 
(using Neural Edge processor) 

In-Cloud
(Unified Rescoring Pipeline with Cloud-based Devices) 
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Conclusions
What we haven’t covered

• Representation Learning

• Multi-Lingual Modeling

• Multi-Speaker Modeling

• Multi-Modal Modeling

• Closed-loop self-learning,
Semi-/weakly-supervised learning

• Life-long learning

• Learning on device

• …

• What we have briefly touched

• Dynamic Adaptation and Personalization

• Attention-based Neural Biasing

• E2E Speech To Understanding

• Backpropagate NLU loss & improve ASR

• Semantic decoder & fusion network

• Dialog Context Carry-Over

• Small Footprint ASR

• Quantization aware training

• Bi-focal RNN-T
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Jimmy Kunzmann
kunzman@amazon.com
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arastrow@amazon.com
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bjornh@amazon.com

Daniel Willett
dawillet@amazon.de

It is still Day One!

A good time to be a speech researcher!


